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Abstract Transonic flutter and active flap control, in two dimensions, are simulated by coupling
independent structural dynamic and inviscid aerodynamic models, in the time domain. A flight
control system, to actively control the trailing edge flap motion, has also been incorporated and,
since this requires perfect synchronisation of fluid, structure and control signal, the “strong”
coupling approach is adopted. The computational method developed is used to perform transonic
aeroelastic and aeroservoelastic calculations in the time domain, and used to compute stability
( flutter) boundaries of 2D wing sections. Open and closed loop simulations show that active control
can successfully suppress flutter and results in a significant increase in the allowable speed index in
the transonic regime. It is also shown that active control is still effective when there is free-play in
the control surface hinge. Flowfield analysis is used to investigate the nature of flutter and active
control, and the fundamental importance of shock wave motion in the vicinity of the flap is
demonstrated.

Nomenclature
a1 ¼ freestream speed of sound
ah ¼ non-dimensional distance of the

elastic axis from midchord, positive
aft of midchord

ACT ¼ active control technology
b ¼ aerofoil semi-chord
c ¼ 2b, aerofoil chord
cb ¼ non-dimensional distance of hinge

axis from midchord, positive aft of
midchord

CHM ¼ control hinge moment,
non-dimensional

CL ¼ lift coefficient
CD ¼ drag coefficient
CMea

¼ pitching moment coefficient about
the elastic axis

e ¼ total specific energy
EA ¼ elastic axis
F ¼ convective aerodynamic flux
fa ¼ non-dimensional aerodynamic loads
fc ¼ non-dimensional active control force
ffp ¼ non-dimensional free-play force

FPM ¼ free-play moment about EA,
non-dimensional

FPHM ¼ free-play hinge moment about hinge
axis, non-dimensional

G ¼ control law gains
h ¼ plunging displacement (measured

+ve downwards)
HA ¼ hinge axis
Ia ¼ polar moment of inertia of aerofoil

mass about EA
Ib ¼ polar moment of inertia of control

surface mass about EA
[K] ¼ non-dimensional stiffness matrix
Kh ¼ mv2

h; bending stiffness
corresponding to plunging
displacement

Ka ¼ Iav
2
a; torsional stiffness

corresponding to pitching rotation
Kb ¼ Ibv

2
b; torsional stiffness

corresponding to control surface
rotation

L ¼ q1cCL, aerodynamic lift
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LCO ¼ limit cycle oscillations
m ¼ mass of the aerofoil per unit span
[M] ¼ non-dimensional mass matrix
M1 ¼ free-stream Mach number
Mea ¼ q1c

2CMea
pitching moment about

elastic axis (EA)
n ¼ cell face outward unit normal
q1 ¼ 1/2r1U

2
1; free-stream dynamic

pressure
ra ¼ Ia /mb 2, aerofoil radius of gyration

about EA in semi-chords,
non-dimensional

rb ¼ Ib /mb 2, control surface radius of
gyration about HA in semi-chords,
non-dimensional

R ¼ residual vector
U ¼ vector of conserved variables
u ¼ velocity vector
Sa ¼ aerofoil static moment about EA
Sb ¼ control surface static moment about

hinge axis
t ¼ real time
u, v ¼ cartesian velocity components
q ¼ structural displacement vector
U1 ¼ free-stream velocity

U* ¼ U1=va
ffiffiffiffi
mb

p
speed index

V ¼ volume of cell
x, y ¼ cartesian coordinates
xt, yt ¼ grid cartesian velocity
Xt ¼ grid velocity vector
xa ¼ off-set distance of the aerofoil centre

of gravity (CG) from EA, positive aft
of EA

xb ¼ off-set distance of the control surface
centre of gravity (CG) from HA,
positive aft of HA

a ¼ pitching displacement (positive
nose-up)

g ¼ ratio of specific heats
r ¼ density
m ¼ m=prb 2; aerofoil-air mass ratio
j ¼ h/b, non-dimensional plunging

displacement
vh ¼ Kh /m, uncoupled plunging natural

frequency
va ¼ Ka /Ia, uncoupled pitching natural

frequency
vb ¼ KbIb, uncoupled control surface

rotation natural frequency
t ¼ fictitious pseudo time

1. Introduction
The design cruising speed of civil aircraft often falls within the transonic
region, where the structural loads, and hence aeroelastic behaviour, are greatly
affected by the presence and motion of shock waves. Hence, the accurate
prediction of flutter characteristics of aerofoils in transonic flow is a critical
design consideration for most modern civil and high performance aircraft.
In the pure subsonic or supersonic regimes, it has been a normal industry

practice to use linear aerodynamic theory, such that the aerodynamic forces
depend upon the body motion in linear fashion, thus permitting uncoupling of
the structural and fluid equations (MacNeal Schwendler Corporation, 1995).
However, this cannot be applied in the transonic regime due to the high
non-linearity of the flow field. The aerofoil thickness was often neglected in
linear theory, but the aerofoil geometry plays an important role in the
development and motion of shock waves in the transonic region (Bland and
Edwards, 1984). There are other non-linear phenomena associated with
aeroelastics, for example, aileron buzz or limit cycle oscillations (LCO), and
none of these phenomena can be predicted directly by traditional linear
theoretical methods, since they are interactions between non-linear
aerodynamic forces and structures. Hence, more advanced aeroelastic
simulation methods, applicable to transonic flows, are essential.
Computational aeroelastics (and aeroservoelastics) often involves two

computational models, namely independent aerodynamic and structural
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models. In the former, the aircraft surface and the surrounding flow field are
discretised, before the governing fluid flow equations are solved. The latter
involves solving the structural equations with aerodynamic forces as source
terms. (For aeroservoelastics a flight control system is also required.) Coupling
these two models in the time domain allows time-accurate simulation of
aeroelastic response, and the possibility of identifying flutter boundaries.

It is possible, with current computational power, to develop coupled
aerodynamic-structural dynamic methods using the Euler and Navier-Stokes
equations as the aerodynamic model. Earlier, euler solvers have been coupled
with structural models (Alonso and Jameson, 1994; Bendiksen and Kousen,
1987; Guruswamy, 1990; Kousen and Bendiksen, 1988, 1994; Robinson et al.,
1991). The Navier-Stokes equations are still rarely used in computational
transonic aeroelasticity mainly due to their excessive CPU demands. Simplified
forms of the Navier-Stokes equations have been used for aeroelastic
applications (Badcock et al., 1995; Meijer et al., 1998; Prananta and Hounjet,
1996; Prananta et al., 1995; Schuster et al., 1998), but results show that for two
degrees of freedom aerofoil motions, little difference was found between using
inviscid and viscous aerodynamic models. Reviews of computational
aeroelasticity are presented in Bennett and Edwards (1998) and Försching
(1995).

The time-accurate interaction between structural dynamics, the flight
control system and aerodynamics, known as aeroservoelasticity, has recently
received attention, (Batina and Yang, 1984; Edwards et al., 1978; Guillot and
Friedman, 1994, 1995; Guruswamy, 1989a, Guruswamy and Tu, 1989b;
Horikawa and Dowell, 1979; Karpel, 1982; Nissim, 1971, 1977, 1990; Nissim and
Abel, 1978; Nissim et al., 1978; Noll, 1993; Pak et al., 1991; Whalley and
Ebrahimi, 1998). Active control technology (ACT) can be implemented within
an aeroelastic solver in order to simulate any of the following: flutter
suppression, gust alleviation or manoeuver enhancement. Earlier work has
relied mainly on transonic small disturbance theory as the aerodynamic solver
(Batina and Yang, 1984; Guruswamy, 1989a; Guruswamy and Tu, 1989b) or
has been performed in the frequency domain (Batina and Yang, 1984; Edwards
et al., 1978; Guillot and Friedman, 1994, 1995; Guruswamy, 1989a, Guruswamy
and Tu, 1989b; Horikawa and Dowell, 1979; Karpel, 1982; Nissim, 1990; Pak
et al., 1991; Whalley and Ebrahimi, 1998). For example, Nissim (1990, 1971)
performed flutter boundary calculations in the frequency domain by
considering the sign of the work done by the structural system on its
surroundings. There are limitations to this approach, but the energy analysis is
extremely useful and is used here.

Active control systems normally have constant (with time) control laws.
However, the use of adaptive control in active flutter suppression has started to
appear in the literature (Guillot and Friedman, 1994, 1995; Pak et al., 1991). This
approach is attractive since the parameters of the system often change with
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time or under load, which are the usual limitations of control using
fixed-structures and fixed-parameter controllers. The added complexity of
adaptive control is often justified by reduced hardware requirements, but it is
very difficult to prove the stability properties of controllers whose parameters
can vary. In addition, it is almost impossible to get certification for civil aircraft
equipped with adaptive control. Hence, the approach of using fixed-parameter
controllers is preferred in this research, although it should also be noted that
fixed-parameter active controllers are also difficult to certify.

This paper presents a computational method to simulate the aeroelastic and
aeroservoelastic behaviour of a two and three degrees of freedom aerofoil. The
motions considered are plunge, pitch and control surface (flap) rotation about
the hinge axis. The aerodynamic model is described by the Euler equations,
which is coupled with a structural model in the time domain, using the “strong”
coupling approach. A control law is implemented within the aeroelastic solver
to investigate the active means of flutter suppression via control surface (flap)
motion, and the effect on the stability (flutter) boundary presented. The
mechanics of flutter are examined by considering the phase difference between
the plunge and pitch motions for a two degree of freedom model. Transonic
flutter is examined using the time-dependent flowfield plots, to demonstrate the
effect of active control on shock motion. The effects of free-play in the control
surface hinge are also considered.

2. Structural model
Figure 1 shows the typical wing section used to derive the structural equations
of motion. This model has been well established for two-dimensional
aeroelastic analysis (Dowell et al., 1994; Fung, 1955; Glaser, 1987). The degrees
of freedom associated with the aerofoil are shown in Figure 1. The pitching and
plunging displacements are restrained by a pair of springs attached to the
elastic axis (EA) with spring constants Ka and Kh, respectively. A torsional
spring is also attached at the hinge axis whose spring constant is Kb.

Djayapertapa (2001) and Scanlan and Rosenbaum (1951) describe the
derivation of the two degrees of freedom aeroelastic equation of motion from
Lagrange’s equation, and the same principal can be applied to a three degree of
freedom system. The resulting governing equations are given by:

m€hþ Sab €aþ Sbb €bþ Khh ¼ 2L ð1Þ

Sab€hþ Ia €aþ ½ðCb 2 ahÞbSb þ Ib� €bþ Kaa ¼ M ea ð2Þ

Sb
€hþ ½ðCb 2 ahÞbSb þ Ib� €aþ Ib €bþ Kbb ¼ Hb ð3Þ

where the symbol definitions are shown in Figure 1. Sa is the static moment of
the aerofoil about the EA and is given by Sa ¼ mXab: Sb is the static moment
of the control surface about the hinge axis and is given by Sb ¼ mXbb:
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Ia ¼ mr2ab
2 is the aerofoil moment of inertia about the EA, and Ib ¼ mr2bb

2 is
the control surface moment of inertia about the EA.

In order to obtain the full non-dimensional form of the equation,
non-dimensional plunge (j ¼ h=b) and non-dimensional time are introduced.
Following the results in the work Djayapertapa (2001), the full non-dimensional
form of the aeroelastic equations can be written in the form

½M�q00 þ ½K�q ¼ fa ð4Þ

where

½M� ¼

1 xa xb

xa r2a ðCb 2 ahÞxb þ r2b

xb ðCb 2 ahÞxb þ r2b r2b

2
664

3
775 ð5Þ

Figure 1.
Aeroelastic parameter

definition
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½K� ¼
4M 2

1g

U *2m

v2
h

v2
a

0 0

0 r2a 0

0 0 r2b
v2
b

v2
a

2
666664

3
777775; ð6Þ

q ¼

j

a

b

8>><
>>:

9>>=
>>;; fa ¼

4M 2
1g

pm

2CL

2CMea

2CH

8>><
>>:

9>>=
>>; ð7Þ

U* and m are the non-dimensional speed (the speed index) and mass ratio of
aerofoil to air, respectively, and their expressions are given by

U* ¼
U1

bva
ffiffiffiffi
m

p ; m ¼
m

prb2
ð8Þ

2.1 Structural time integration
Equation (4) is solved by approximating it at time level nþ 1; and an implicit
Newmark scheme (Bathe, 1982) is used to integrate the equation. Details of the
step by step procedure can be found in the work of Djayapertapa (2001).

The choice of time-step in the integration is conditional on accuracy not
stability, as the Newmark scheme is unconditionally stable. The size of the time
step is governed by the smallest period of the free vibration system (Ts).
The number of time-steps used per cycle is labelled nspc and so Dt ¼ Ts=nspc:
The time-step requirements of the Newmark scheme were assessed using a two
degree of freedom system, a test case from the works of Bathe (1982). The
equations of motion are by

2:0 0:0

0:0 1:0

" #
Y 00

1

Y 00
2

( )
þ

6:0 22:0

22:0 1:0

" #
Y 1

Y 2

( )
¼

0:0

10:0

( )
ð9Þ

and the initial conditions are Y ¼ f0; 0g
T
; Y0 ¼ f0; 0g

T
: The exact solution of

these equations is

Y 1 ¼
5

3
12 cosð

ffiffiffi
2

p
tÞ

� �
2

2

3
12 cosð

ffiffiffi
5

p
tÞ

� �
ð10Þ

Y 2 ¼
5

3
12 cosð

ffiffiffi
2

p
tÞ

� �
þ

4

3
1þ cosð

ffiffiffi
5

p
tÞ

� �
ð11Þ

Figure 2 shows the responses for nspc ¼ 20 and 30. It is clear that 30 time-steps
per cycle gives acceptable accuracy, and this is not an excessive number,
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Figure 2.
Response comparison

Newmark scheme
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particularly when one considers how cheap the structural equations are to
solve compared to the fluid.

3. Aerodynamic model
A finite-volume Euler code is used for the aerodynamic model. The
two-dimensional unsteady Euler equations on a moving grid in integral form
are:

›

›t

Z Z
V

U dx dyþ

Z
›V

F ·n dS ¼ 0 ð12Þ

where U is the vector of conserved variables, F is the flux vector, n is the
outward cell face unit normal, and S the peripheral length of the cell face.U and
F are given by:

U ¼

r

ru

rv

re

8>>>>><
>>>>>:

9>>>>>=
>>>>>;
; F ¼

rðu2XtÞ

ruðu2XtÞ þ Pi

rvðu2XtÞ þ Pj

reðu2XtÞ þ Pu

8>>>>><
>>>>>:

9>>>>>=
>>>>>;

ð13Þ

where u is the velocity vector,Xt the grid velocity vector, and P, r, u, v and e are
pressure, density, Cartesian x- and y-component velocities and total specific
energy, respectively. The equation set is closed by

P ¼ ðg2 1Þ re2
ru2

2

� �
ð14Þ

Figure 2.
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3.1 Discretisation
The unsteady Euler equations are solved using a Jameson ( Jameson et al., 1981)
type cell-centred finite-volume method. Equation (12) is applied to each cell of
the mesh. Following Jameson et al. (1981), the spatial and time dependent terms
are decoupled and a set of ordinary differential equations are obtained.
Artificial dissipation needs to be added to stabilise the solution ( Jameson et al.,
1981; Kroll and Jain, 1987).

3.2 Aerodynamic time integration
It is expensive to use explicit time-stepping for unsteady flows. To maintain
time-accuracy the whole domain must be integrated by the same time-step, and
this is limited to the smallest value over the domain. Hence, an implicit scheme
is used, based on that proposed by Jameson (1991). This solves the unsteady
flows as a series of pseudo-steady cases, and is extremely efficient compared to
an explicit scheme (Allen, 1997b; Gaitonde, 1994). Equation (1) is approximated
for each computational cell at time level (n+ 1) by

dðV nþ1Unþ1Þ

dt
þ Rnþ1 ¼ 0 ð15Þ

where V is the cell area, R is the flux integral, and the superscript (n+ 1)
denotes the time level ðnþ 1ÞDt: The d/dt operator is approximated by an
implicit second-order backward difference to give

3V nþ1Unþ1 2 4V nUn þ V n21Un21

2Dt
þ RðUnþ1Þ ¼ 0 ð16Þ

or

R* ðUnþ1Þ ¼ RðUnþ1Þ þ
3V nþ1Unþ1 2 4V nUn þ V n21Un21

2Dt
¼ 0 ð17Þ

To solve this Un+1 must be iterated upon until equation (17)!0. Hence, a
fictitious derivative with respect to “pseudo time” t can be introduced to the
equation to give

V nþ1 dU

dt
þ R* ðUÞ ¼ 0 ð18Þ

and the solution of equation (17) is then equivalent to marching equation (18) to
a steady state in pseudo time, i.e. when U has been found such that dU=dt! 0
then Unþ1 ¼ U: There is no limit on the real time-step allowed, and steady
acceleration techniques can be used in pseudo time. Equation (18) is solved
using a multi-stage Runge-Kutta method with local time-stepping.
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3.3 Moving mesh algorithm
The flow-solver is used in conjunction with a structured moving mesh, which
allows the cell volumes to distort as the aerofoil moves or deforms. An
algebraic moving grid generator based on transfinite interpolation ( Eriksson,
1982; Gordon and Hall, 1973; Gordon and Thiel, 1982) is used. This approach is
extremely efficient, as it allows instantaneous grid positions and speeds to be
computed directly at any time (Allen, 1995, 1997a; Gaitonde and Fiddes, 1993).

The cell areas required in the time-stepping scheme can be calculated
exactly in terms of the coordinates of the grid nodes. However, if the areas are
calculated in this manner, errors will be introduced by the moving mesh. In
order to avoid such errors, a geometric conservation law needs to be satisfied
numerically, in addition to the mass, momentum and energy conservation laws
that govern the physics of the flow (Thomas and Lombard, 1979). The areas
must be integrated forward using the same numerical scheme as for the flow.

Figure 3 shows an example of a moving C-grid generated by the present
method. A sequence of grids is shown for NACA 64A010 aerofoil pitching
up 208.

More details of the flow-solver can be found in the works Djayapertapa
(2001) and Djayapertapa and Allen (2001).

4. Aero-structural coupling
There are two options when coupling separate aerodynamic and structural
dynamic codes. The simplest method to couple separate aerodynamic and
structural dynamic codes is “weak” coupling, wherein there is no intermediate

Figure 3.
Moving C-grid,
NACA0012 aerofoil
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exchange of information between the two solvers at each time level. At each
time level the fluid is solved using the current structural position to give
aerodynamic loads on the structure, and these are then used to solve for a new
structural position. This is simply repeated for each time level. Hence, the fluid
and structure are not synchronised in time, and there is always a phase lag
between the two. This phase lag will be time-step dependent, and this has been
examined earlier.

Alternatively “strong” coupling can be used, wherein there is exchange of
information between the two solvers. At each real time level the aerodynamic
loads are computed, then the structural position that results from those loads
are computed. The aerodynamic loads around this new structural position are
then recomputed, and this iterative procedure is repeated until the fluid and
structure are perfectly synchronised at each real time level. This is more
complex to code than weak coupling, but ensures there is no phase lag between
fluid and structure. A flight control system is integrated with the
aero-structural code in the next section, and it is clearly desirable that no
phase lag is present in this case.

In fact, earlier it has been shown (Djayapertapa and Allen, 2001) that only
for low numbers of real time-steps per period is the strong coupling scheme
more expensive, in terms of CPU requirements, than the weak coupling scheme.
However, in this region the phase lag is such that weak coupling is not of
acceptable accuracy. As a flight control system is to be integrated which cannot
function with inherent phase lag, the strong coupling scheme was chosen.

It has also been shown (Djayapertapa and Allen, 2001) that computations
performed on a grid of density 147 £ 32 points, using 60 real time-steps per
cycle gave acceptable accuracy. Increasing either grid density or number of
time-steps gave only small increases in accuracy, which were far outweighed
by the increased computational cost.

4.1 Energy considerations
During an unsteady coupled calculation there will be energy transfer from fluid
to structure, and vice versa, and it is useful to examine this energy transfer.
The general energy identity (derivable from Lagrange’s equation) is given by

E total ¼ KEþ PE ¼ Eo þW ext ð19Þ

where Etotal is the total mechanical energy of the structure, consisting of kinetic
energy (KE) and potential energy (PE). Eo is the initial energy of the structure,
i.e. the energy that the structure has at time¼ 0, andWext is the work done by
external forces such as the aerodynamic forces.

W ext . 0 indicates that work is being done by the fluid. If the amplitude of
the structural oscillation grows then Wext and Etotal will also grow, but
following the energy identity given by equation (19), the difference between the
total energy and the work done by the aerodynamic forces should be constant.
That identity can also be used to check the time integration scheme used. If the
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difference is constant then no amplitude error or period elongation are
introduced by the time integration scheme.

4.2 Computed responses for Isogai model
A two degree of freedom test case due to Isogai (1979) was first considered.
The aeroelastic parameters used are

ah ¼ 22:0; xa ¼ 1:8; ra ¼ 1:87;
vh

va

¼ 1:0; m ¼ 60: ð20Þ

This represents a typical section of a swept back wing, since the elastic axis is
ahead of the leading edge.

Aeroelastic responses for plunge and pitch for speed index, U*, values of
0.30, 0.5025 and 0.70 at a Mach number of 0.85 are shown in Figure 4. At the
lower value of speed index the responses are decayed. These decayed responses
are produced because the structural stiffness overpowers the work done by the
fluids. As U* increases the response reaches a neutrally stable condition in
which the structural stiffness is just sufficient to dissipate the extracted energy
– this is termed the flutter point (0.5025 in this case). When the speed index is
increased further, the extracted energy overpowers the structural stiffness,
hence diverging responses are obtained. The character of this divergent
response then can be benign, i.e. small amplitude flutter or catastrophic, i.e.
explosive flutter. The analysis of this character should be based on Hopf
bifurcation or stability/instability of the LCO. For panel flutter, this analysis
was performed by Librescu (1965, 1967), where the flutter character was termed
“undangerous” or “dangerous”, and was determined by the sign of the first
Liapounov magnitude (Bautin, 1949).

Figure 5 displays the energy variations for the above three cases. The
energy is non-dimensionalised by the initial energy E0, so that the difference of
the total energy and the work done by external forces should be equal to 1 as
time increases. From Figure 5 we see that this difference remains constant and
equal to the initial energy E0, thus proving that the numerical scheme used is
energy conserving.

The flutter point is located for a particular Mach number by computing the
time-response for several values of speed index, and analysing the rate of decay
for each one. When the speed index is found at which the rate of decay is zero,
this is the flutter speed index at that Mach number. If the process of locating the
flutter point is repeated for several Mach numbers the flutter boundary of the
aerofoil can be computed. Therefore, it should be noted that the coupled code is
not a “prediction” tool, but a simulation tool which, if required, can be used in a
brute force way to compute flutter boundaries. The computed flutter boundary
is shown in Figure 6, which also shows results due to Alonso and Jameson
(1994), Isogai (1979) and Kousen and Bendiksen (1994). The results compare
well.
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Figure 4.
Aeroelastic response,

U * ¼ 0.30, 0.5025, 0.7,
and Mach ¼ 0.85
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Figure 5.
Energy variations,
U* ¼ 0.30, 0.5025, 0.7,
and Mach ¼ 0.85
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One interesting point to consider is the phase difference between the plunge
and pitch motion. Figure 7 shows the phase difference for varying Mach
number and speed index. This shows that in the lower transonic region the
plunge and pitch motion are in phase even far above the flutter point. As the
Mach number and speed index increase, this difference increases almost
linearly, until there is a rapid change to antiphase motion at high Mach
number. It is believed that once the Mach number becomes high enough, or the
amplitude of oscillation becomes large enough (i.e. the speed index becomes
large enough), the shockwaves on one or both sides will move to the trailing
edge. Once this occurs the motion of the shocks becomes limited, and hence the
section motion must change since the applied aerodynamic load variation
changes.

Figure 6.
Isogai model predicted

flutter boundary

Figure 7.
Phase difference plot,

Isogai model
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4.3 Computed three degree of freedom response
A three degree of freedom was added to the NACA64A010 case used earlier.
The structural parameters used for the calculations are as follows (Schulze,
1998):

ah ¼ 20:2; xa ¼ 0:2; ra ¼ 0:5;
vh

va

¼ 0:3; m ¼ 23:48;

xb ¼ 0:008; rb ¼ 0:06;
vb

va

¼ 1:5; Cb ¼ 0:5 ð21Þ

The computed flutter boundary of the aerofoil is shown in Figure 8. The figure
also shows results obtained by DLR (Schulze, 1998), and the two flutter
boundaries compare very well.

5. Aeroservoelastic coupling
The trailing edge flap may be moved according to the instantaneous aerofoil
state to attempt to reduce the structural deformation. Hence, active control has
been implemented within the aeroelastic solver, in order to investigate active
means of transonic flutter suppression via control surface (flap) and
motion-aeroservoelasticity (closed loop calculations). A simple control law is
used which relates the required flap deflection angle, bc, to the motion of the
main aerofoil surface (plunge and pitch degrees of freedom). Hence, bc is
evaluated according to the following equation

bc ¼ G1jþ G2aþ G3
_jþ G4 _aþ G5

€jþ G6 €a ð22Þ

where the G’s are the gains of the system.

Figure 8.
Predicted flutter
boundary for three
degrees of freedom
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The flap is moved according to the demanded deflection angle bc. However,
instead of moving the flap by bc degrees within a certain amount of time
(according to the flap deflection rate), the required angle is converted into
equivalent control hinge moment (CHM) which is blended into the open loop
aeroelastic equations as the external moment acting on the hinge axis, hence
only affecting the b degree of freedom. There are two hinge moments on the
right hand side of the aeroservoelastic equation, the aerodynamic hinge
moment (AHM) and the CHM as shown by equation (23)

xb €jþ ðCb 2 ahÞxb þ r2b

h i
€aþ r2b

€bþ
4M 2

1g

U *2m
r2b

vb

va

� �2

b

¼

AHM

8M 2
1g

pm
CH|fflfflfflfflfflffl{zfflfflfflfflfflffl}þ

CHM

4M 2
1g

U *2m
r2b

vb

va

� �2

bc|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl} ð23Þ

This is because it is impossible to guarantee that the flap will move from b to
b+bc within a certain amount of time. By converting the required angle to the
equivalent CHM the flap dynamics are accounted for. Furthermore, from the
open loop three degree of freedom case, it was seen that the flap motion also
influences the pitch and plunge motion. That influence has already been
included when the CHM was blended into the open loop aeroelastic equation.

The same time marching scheme is used to integrate the aeroservoelastic
equation of motion, the only change lies in the representation of the right hand
side force. It is now given by f ¼ fa þ fc where fc is the control forces and is
given by fc ¼ f0; 0;CHMg

T
:

The energy identity given by equation (19) should still hold, and the work
done by external forces includes an extra term due to the control surface.

5.1 Computed closed loop responses
Closed loop simulations were performed using the active control. A Mach
number of 0.85 was chosen, and the speed index was 5 per cent above the flutter
speed, i.e. corresponding to an unstable response.

Different gain combinations were first considered in order to determine
the optimum gain combinations to be used. From a series of calculations it
was found that G1, G2, G5 and G6 fail to suppress the flutter, whereas G3

and G4 successfully suppressed the motion. The most effective combination
was to use G3 and G4 together. Figure 9 shows the plunge, pitch and flap
responses for M ¼ 0:85; and U* ¼ 1:05U*

flutter: The initial disturbance was
_j ¼ _a ¼ 0:01 and the gains were G3 ¼ G4 ¼ 1:0: Two situations were
considered: implementing the active control immediately, and at some later
time. It is clear that the active control has managed to “drain” the
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Figure 9.
Positive velocity
feedback; G3 ¼ +1.0,
G4 ¼ +1.0, and
U* ¼ 1.05 U*f
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structural energy very quickly, even when the disturbance has sufficient
time to grow.

The effect of the control law on the flutter boundary was then considered.
The open and closed loop flutter boundaries are shown in Figure 10. The
control law works very effectively within the transonic region, where the shock
position can be affected by the flap. An increase of upto 19 per cent in the
allowable speed index can be achieved with this control law.

The mechanics of transonic flutter and active control were investigated by
considering a more unstable case. Figure 11 shows a series of flowfield Mach
contours forM ¼ 0:85; andU* ¼ 1:10U*

flutter without active control. The same
aerofoil was used, but the grid density was increased to 211 £ 40 to capture the
shock more sharply. Contours are plotted every quarter period, for six periods.
These show how the out of phase shock motion across the flap causes the
oscillation to grow. Figure 12 shows Mach contours for the same case with
active control switched on just before the end of the third cycle. The flap is
clearly effective in controlling the shock motion in this case.

It should be remembered that an inviscid aerodynamic model is used here,
and that viscous effects are likely to be significant for this type of flow, where
there are shock waves present and a moving control surface.

5.2 Effect of sampling frequency
A real flight control system would sample the aerofoil state continuously,
whereas it is only sampled at discrete points in time here. Hence, the effect of
time-step size on the active control was considered. The above computations
were performed with 60 real time-steps per period. The above case was run
again with 240 time-steps per period. Figure 13 shows the plunge, pitch, and

Figure 10.
Control law effectiveness
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Figure 11.
Open loop flowfield
mach contours
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Figure 12.
Closed loop flowfield

mach contours
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Figure 13.
Effect of reducing the
real time-step size
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flap variations for the two sampling frequencies. It is clear that there is very
little difference between the two cases.

6. Non-linear structural model
The effect of structural non-linearity on aeroservoelastic calculations has also
been considered. Backlash (free-play) in the torsional spring of the control
surface motion was considered.

Figure 14 plots the variation of the hinge moment against the flap deflection
angle. The solid line represents the linear variation that has been used so far,
and the dashed line shows the typical non-linear characteristics for backlash.
There is a range of rotational amplitude where the restoring hinge moment is
zero, outside this range a linear relationship between the restoring hinge
moment and flap deflection angle exists.

Free-play of the hinge axis modifies the aeroelastic and aeroservoelastic
equation only for the b (flap) degree of freedom. Outside the free-play region
the equation of motion for the flap degree of freedom is given by

Figure 14.
Linear and non-linear

moment relation
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� �2

bfp|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

ð24Þ

where the positive sign is used when b.bfp and negative sign is used when
b,2bfp to evaluate free-play hinge moment (FPHM). The same
time-marching scheme can be used again to integrate equation (24), as only
change lies in the representation of the right hand side force. It is now given by
f ¼ fa þ fc þ ffp where ffp is the free play hinge moment and is given by
ffp ¼ f0; 0;FPHMg

T
:

As before the energy identity given by equation (19) should still hold. The
work done by the external forces includes an extra term when b is outside the
free-play region. Inside the free-play region this term and the control surface
term are both zero.

6.1 Computed responses
Open and closed loop calculations were performed for the three degree of
freedom case presented above, now with the non-linear CHM. The aerofoil is
the NACA64A010 section, the Mach number is 0.85 and the flutter speed index
was chosen. The effects of the free-play of 1.08 in the hinge axis torsional spring
on the aeroelastic responses are shown in Figure 15. From the figure it can be
seen that free-play actually causes the responses to grow and settle into a limit
cycle oscillation, i.e. the effect is destabilising.

Results for active control calculations with backlash are shown in Figure 15.
It can be seen that the responses are damped when the required flap angle bc

falls outside the free-play area. However, once the response has settled, and bc

lies within the free-play area, there is not much that the control law can do,
since it is utilising the CHM to suppress the motions, and within the free-play
area the control hinge moment is zero. From the plot of energy it is clear that
the control law drains the energy until bc falls within the free-play area.

Figure 16 shows the open loop phase plane plots for plunge, pitch and flap
deflection for the linear structural model and free-play of one degree. Figure 17
shows flap deflection phase plane plots for closed loop calculations with and
without free-play. With free-play the flap settles into a periodic motion.

It should also be noted here that the effect of signal sampling frequency, i.e.
size of the real time-step used, was also considered in the free-play region.
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Figure 15.
The effects of free-play of

1.0 deg
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Again there was only a small amplitude dependence on the time-step size, and
no frequency dependence, as in Section 5.2.

7. Conclusions
Numerical simulations of transonic flutter and active control have been
performed, by coupling independent aerodynamic and structural dynamic
codes in the time domain. A simple control system has also been integrated
with the coupled code, and since this requires perfect synchronisation of fluid,
structure and control signal, the “strong” approach to coupling has been
adopted. Two and three degree of freedom two-dimensional structural models
have been considered. The consistency of the coupling has been demonstrated
by considering the total energy of the structure and work done by the fluid. The
difference between the two remains constant with time regardless of the
structural motion.

The coupled scheme has been used to simulate time responses to structural
disturbances for various Mach numbers and speed indices, to attempt to
compute flutter boundaries for the two and three degree of freedom cases, and
the results compare well with other published data. Furthermore, the structural
model has been extended to include an actively controlled trailing edge flap,
and this has succesfully been used to increase the stability margin by means of
control surface motion. The aerofoil velocity feedback signal was found to give
the best suppression results, and for the NACA64A010 aerofoil an increase of
up to 19 per cent in the allowable speed index can be achieved within the
transonic region. Furthermore, it has been shown that active control is still
effective when there is free-play in the control hinge – the aerofoil response is
supressed to within the free-play region.

Figure 15.
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Figure 16.
Phase plane plots for
linear and non-linear

structure
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The mechanics of transonic flutter and active control have been examined by
considering time-dependent flowfield data, and the fundamental importance of
shock wave motion has been clearly demonstrated.
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